Материал из PL Engineering
Маркетинговая информационная система - как система принятия маркетинговых решений
Маркетинговая информационная система (МИС) - это экспертная система, включающая в себя индивидов, оборудование и процедуры сбора, сортировки, анализа, оценки и распределения необходимой своевременной и достоверной информации, используемой при принятии маркетинговых решений. Первое определение МИС было дано в работе Cox D.F. и Good R.E. (1967 г.), в соответствии с которым МИС можно рассматривать как совокупность процедур и методов планового анализа и представления информации для принятия решений.
Рассматриваются теоретические и практические аспекты проектирования маркетинговой информационной системы на предприятии. Производится оценка современных методов обработки и преобразования маркетинговой информации. Уточняется понятие маркетинговой информационной системы и основных методов анализа многомерных данных.
Интеграция маркетингового подхода в общую систему менеджмента на предприятии требует, прежде всего, пересмотра основных принципов управления. Это во многом обусловлено необходимостью повышения гибкости внутренних бизнес-процессов и их координации с общей стратегией компании. Все более актуальной становится концепция управления отдельными бизнес-процессами, которая позволяет своевременно адаптироваться к изменениям внешней среды. Первоочередное внимание при этом уделяется повышению эффективности информационных коммуникаций между внутренней и внешней средой предприятия.
Система управления бизнес-процессами в качестве базового элемента должна рассматривать изменяющиеся потребности внешней среды, а в качестве главного информационного контура — систему управления маркетингом. Управление на основе информации предусматривает определение количественных пропорций и зависимостей между рыночными явлениями и факторами, которые на них влияют. На основании выводов и рекомендаций, полученных на этапе анализа, осуществляется стратегическое планирование маркетинга, уточняется структура комплекса маркетинга, а также выполняется оценка соответствия фактических и прогнозируемых показателей.
Исследованиям методологических аспектов оценки роли информации в процессе принятия решений посвящены работы зарубежных и отечественных ученых. Однако, несмотря на актуальность проблемы, в литературе практически не рассматриваются принципы управления предприятием на основе маркетинговой информации. В этой связи представляется важным исследование механизма преобразования информации, а также возможность ее практического использования для принятия управленческих решений.
Интеграция различных процессов в единое информационное пространство предприятия предполагает использование системного подхода к организации сбора, обработки и последующего анализа данных. Система маркетинговой информации (МИС) проектируется на основе комплексности и сбалансированности всех компонентов ее предметной области, что достигается за счет применения современных средств вычислительной и информационной техники.
Дальнейшее исследование этого вопроса было связано с поиском универсального определения МИС исходя из общих задач, стоящих перед маркетинговой службой. Недостатком такого подхода является значительное упрощение и формализация информационных процессов. В связи с этим представляется важным определить основные функции МИС с учетом структуры цикла управления маркетингом на предприятии (Рис. 1).
Таким образом, функции МИС в структуре предприятия могут быть представлены в виде маркетинговой системы поддержки принятия решений (MDSS — marketing decision support system), которая является начальным и конечным элементом информационных процессов.
Необходимо отметить, что структура и функциональные возможности МИС должны во многом зависеть от специфики и масштабов деятельности предприятия. Ф. Котлер выделяет четыре основных блока в структуре МИС:
- Система внутренней отчетности отвечает за сбор, обработку анализ внутренних данных. В распоряжении компании всегда находится очень ценная информация о запасах, объемах продаж, затратах на рекламу, выручке. Система внутренней отчетности позволяет сохранить эти данные и преобразовать в удобную для работы форму, в результате чего можно анализировать прибыльность конкретных товаров / услуг, каналов распределения, потребителей, динамику объемов продаж и т.п.
- Система анализа внутренней маркетинговой информации представляет собой разовый анализ внутренней информации, проводимый для достижения конкретной цели (например, анализ изменения объема продаж товара после изменения его цены либо проведения рекламной кампании). Подобный анализ проводится всякий раз, когда в этом появляется необходимость.
- Система наблюдения за внешней средой включает в себя отслеживание изменений в законодательстве, экономическом состоянии страны/региона и уровне доходов граждан, изменений в технологии производства товаров компании, появлении новых технологий и новых конкурентных товаров, и т.п.
- Система маркетинговых исследований: специальные маркетинговые исследования являются составной частью маркетинговой информационной системы и отличаются от систематического наблюдения за внешней средой своей целевой направленностью — маркетинговые исследования, как правило, проводятся для получения информации по конкретному вопросу для решения вполне конкретной проблемы.
Для восполнения данного пробела взаимодействие между подсистемами необходимо представить в виде последовательного процесса сбора, хранения, обработки и анализа информации, необходимой для принятия управленческих решений. Эффективность и функциональность МИС будет во многом зависеть от степени автоматизации этих процессов. Условно можно выделить два уровня (этапа) автоматизации системы. На первом уровне (характерном для малых и средних предприятий) отсутствует централизованная схема передачи информации. В этом случае информационное наполнение МИС производится из различных источников: подсистема внутренней отчетности — данные из CRM- и (или) ERP-систем (исполнители — отдел продаж и производство), а также из систем бухгалтерской отчетности, подсистема внешнего наблюдения и подсистема маркетинговых исследований — данные, собранные отделом маркетинга (исполнители — менеджеры по маркетингу). Хранение и анализ информации часто осуществляется с помощью офисных приложений (MS Access и MS Excel) либо прикладных программ. Преобразованная информация, как правило, используется на уровне высшего руководства для принятия стратегических решений. На втором уровне автоматизации (крупные компании и холдинги) происходит консолидация внутренней и внешней информации компании на основе корпоративных информационных систем (КИС) (маркетинг является одной из составляющих системы) либо унифицированных маркетинговых информационных систем. Эффективность маркетинговых служб достигается за счет регламентации процессов по обмену информацией с другими подразделениями.
В качестве основы модели МИС будем рассматривать базовые понятия автоматизации процессов, таких как базы данных, OLAP-анализ (on-line analytical processing), анализ информации с помощью статистических моделей и систем Data Mining.
Реализация централизованного обмена информацией между подразделениями предприятия основана на возможности использования одних и тех же данных разными пользователями. Формирование собственных баз данных позволяет решать ряд конкретных прикладных задач, возникающих в ходе практической деятельности. Информация в базах данных структурируется в виде таблиц, которые представляют собой набор строк и столбцов, где строки соответствуют экземпляру объекта, конкретному событию или явлению, а столбцы — атрибутам (признакам, характеристикам, параметрам) этого объекта или явления.
Источниками вторичных данных о рынке и внешней макросреды могут быть:
- издания общей экономической ориентации;
- специальные книги и журналы;
- технические каналы средств массовой информации;
- рекламная деятельность массового характера
- выставки, презентации, совещания, конференции, дни открытых дверей;
- издаваемые законы и акты, указы президента;
- выступления государственных, политических и общественных деятелей;
- публикуемые бухгалтерские и финансовые отчеты предприятий;
- фирменные продажи с демонстрацией возможностей товаров;
- публикации специализированных экономических и маркетинговых организаций, различных общественных организаций;
- коммерческие базы и банки данных;
- каналы личной коммуникации.
Рассмотренные особенности организации информационного обеспечения маркетинговой деятельности позволяют сделать вывод, что создание эффективных систем маркетинговой информации требует от специалистов-маркетологов творческого подхода, а большие объемы маркетинговой информации – применения современных компьютерных технологий. Совершенствование процессов принятия маркетинговых решений на предприятии в последнее время связывается с разработкой и внедрением экспертных систем.
Статистические модели позволяют определенным образом преобразовать полученные наборы данных в прогнозные значения ключевых показателей, на основании которых осуществляется оптимальное планирование и принятие управленческих решений. Как правило, такое преобразование производится посредством группировки исходных данных, определения взаимосвязи между группами и определения прогнозных значений одних показателей с помощью других. Важно отметить, что необходимым условием для группировки должна быть преемственность исходных данных либо по оцениваемому свойству, либо по количественным характеристикам, либо по временным показателям.
Анализ структуры данных за определенный интервал времени позволяет обнаружить неявные взаимосвязи между группами. В то же время использование свойства объекта в качестве независимой переменной часто осложняется наличием большого числа субъективных факторов, которые могут изменяться при переходе от одного значения данного свойства к другому. Действие таких факторов поддается описанию, если в качестве аргументов для сравнения будут выступать не различные свойства объектов, а динамика одних и тех же свойств во времени. Таким образом, динамический ряд в отличие от случайной выборки имеет определенную последовательность и связан с переменной времени.
На первом этапе анализа временных рядов так же, как и при анализе структуры данных за определенный интервал времени необходимо рассчитать обобщающие показатели каждой группы. Абсолютные и относительные показатели динамики могут рассчитываться по каждому элементу группы (для каждого значения времени — уровня ряда): базисные и цепные приросты уровней ряда, темпы роста и темпы прироста, либо для всей группы — средние величины данных показателей. В маркетинговом анализе одним из основных показателей динамики является частота (стабильность) и возможность прогнозирования будущих значений элементов группы. Для этого рассчитывается коэффициент вариации по каждому элементу группы, который характеризует степень отклонения параметра от его среднего значения.
Результатом анализа является распределение элементов на три основные подгруппы: X — характеризуется стабильной количественной оценкой, Y — степень отклонения определяется с заданной точностью, Z — изменение оценки характеризуется нерегулярностью и низкой точностью прогнозирования (XYZ-анализ). На практике ABC- и XYZ-анализ проводятся параллельно с целью классификации элементов группы одновременно по величине количественной оценки элемента в общей структуре (принадлежность к одной из подгрупп А, B или C) и динамике изменения этого элемента во времени (принадлежность к одной из подгрупп X, Y или Z).Существуют две основные цели анализа временных рядов: определение природы ряда и прогнозирование его будущих значений. При выборе методов прогнозирования необходимо определить, имеется ли зависимость исследуемого параметра от других переменных и есть ли прогнозные значения этих переменных. Если такой зависимости нет, то единственным показателем прогнозной модели будет фактор времени, при этом считается, что влияние других факторов несущественно или косвенно сказывается через фактор времени. В этом случае параметр х в приведенном выше уравнении регрессии заменяется на параметр времени t: Y = b0 +b1*t. Выбор вида функции, описывающей тренд, параметры которой определяются методом наименьших квадратов, производится в большинстве случаев эмпирически, путем построения ряда функций и сравнения их между собой по величине среднеквадратической ошибки.
Таким образом, методы прогнозирования временных рядов во многом основаны на возможности экстраполяции детерминированной компоненты, которая может быть описана с помощью различных трендовых моделей, а также скорректирована с учетом систематических отклонений. Использование таких методов часто осложняется действием случайной компоненты, количественная оценка которой часто носит вероятностный характер. Поэтому для детерминации случайной компоненты используются казуальные (причинно-следственные) методы, в основе которых лежит изучение глубинных процессов и выявление скрытых факторов, определяющих поведение прогнозируемого показателя. К числу широко используемых казуальных методов относится корреляционно-регрессионный анализ, рассмотренный выше. В многомерном случае, когда используется более одной независимой переменной, уравнение регрессии имеет вид: Y = b0 + b1 * x1 + b2 * x2 + b3 * x3 + … + bn * xn. В данном уравнении регрессионные коэффициенты (b-коэффициенты) представляют собой независимые вклады каждой переменной (xi) в предсказание зависимой переменной (Y). На практике часто исследуются зависимости между итоговыми значениями групп, без учета их внутренних взаимосвязей.
С помощью методов регрессионно-корреляционного анализа оценивается зависимость объема продаж от каждого фактора (строится таблица попарных корреляций), а также определяются коэффициенты bi в уравнении регрессии. Если необходимо построить прогнозную модель прибыли, то к указанным факторам продаж добавляют факторы затрат.
Регрессионная модель является одной из самых распространенных моделей для математического описания зависимостей между различными группами переменных. В то же время многообразие и неоднородность маркетинговой информации часто обнаруживает необходимость использования сложных алгоритмов для выявления скрытых зависимостей. Многоаспектность данной проблемы сегодня рассматривается в рамках отдельного направления, часто обозначаемого термином Data Mining (интеллектуальный анализ данных). Data Mining представляет собой процесс выявления скрытых взаимосвязей внутри многомерных массивов информации. Как правило, выделяют пять стандартных типов закономерностей, которые являются объектом изучения Data Mining: ассоциация, последовательность, классификация, кластеризация и прогнозирование. На основе выявленных закономерностей формируются типовые шаблоны, которые интерпретируют исходные данные в информацию, необходимую для принятия управленческих решений.
Использование маркетинговой информации становится необходимым условием повышения гибкости и эффективности системы управления предприятием. В то же время применению МИС должен предшествовать этап описания внутренних бизнес-процессов предприятия и детализации основных количественных параметров для их оценки. Таким образом, проектирование МИС представляет собой сложный и многоэтапный процесс, в ходе которого уточняются методы алгоритмизации информационных процессов и способы их интерпретации для принятия управленческих решений.
Библиографический список
- Баззел Р., Кокс Д., Браун Р. Информация и риск в маркетинге — М.:Финстатинформ, 1993
- Беляевский И.К. Маркетинговые исследования: информация, анализ, прогноз. — М.: Финансы и статистика, 2001. — 578 с.
- Мхитарян С.В. Маркетинговая информационная система. — М.: Изд-во Эксмо, 2006. — 336 с.
- Голубков Е.П. Маркетинговые исследования: теория, методология и практика: Учебник. — 3-е изд., перераб. и доп. — М.: Издательство «Финпресс», 2003. — 496 с.
- Котлер Ф. Основы маркетинга. Краткий курс.: Издательство «Вильямс», 2007. — 656 с.